0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Какие виды топологии сети существуют?

Какие виды топологии сети существуют?

Топология (конфигурация) – это способ соединения компьютеров в сеть. Тип топологии определяет стоимость, защищенность, производительность и надежность эксплуатации рабочих станций, для которых имеет значение время обращения к файловому серверу.

Понятие топологии широко используется при создании сетей. Одним из подходов к классификации топологий ЛВС является выделение двух основных классов топологий: широковещательные и последовательные.

В широковещательных топологиях ПК передает сигналы, которые могут быть восприняты остальными ПК. К таким топологиям относятся топологии: общая шина, дерево, звезда.

В последовательных топологиях информация передается только одному ПК. Примерами таких топологий являются: произвольная (произвольное соединение ПК), кольцо, цепочка.

При выборе оптимальной топологии преследуются три основных цели:

— обеспечение альтернативной маршрутизации и максимальной надежности передачи данных;

— выбор оптимального маршрута передачи блоков данных;

— предоставление приемлемого времени ответа и нужной пропускной способности.

При выборе конкретного типа сети важно учитывать ее топологию. Основными сетевыми топологиями являются: шинная (линейная) топология, звездообразная, кольцевая и древовидная.

Например, в конфигурации сети ArcNet используется одновременно и линейная, и звездообразная топология. Сети Token Ring физически выглядят как звезда, но логически их пакеты передаются по кольцу. Передача данных в сети Ethernet происходит по линейной шине, так что все станции видят сигнал одновременно.

Виды топологий

Существуют пять основных топологий (рис. 3.1): общая шина (Bus); кольцо (Ring); звезда (Star); древовидная (Tree); ячеистая (Mesh).

Рис. 3.1. Типы топологий

Общая шина – это тип сетевой топологии, в которой рабочие станции расположены вдоль одного участка кабеля, называемого сегментом. Топология общая шина (рис. 3.2) предполагает использование одного кабеля, к которому подключаются все компьютеры сети.

В случае топологии Общая шина кабель используется всеми станциями по очереди:

Рис. 3.2. Топология Общая шина

1. При передаче пакетов данных каждый компьютер адресует его конкретному компьютеру ЛВС , передавая его по сетевому кабелю в виде электрических сигналов.

2. Пакет в виде электрических сигналов передается по «шине» в обоих направлениях всем компьютерам сети.

3. Однако информацию принимает только тот адрес, который соответствует адресу получателя, указанному в заголовке пакета. Так как в каждый момент времени в сети может вести передачу только одна PC, то производительности ЛВС зависит от количества PC, подключенных к шине. Чем их больше, тем больше ожидающих передачи данных, тем ниже производительности сети. Однако нельзя указать прямую зависимость пропускной способности сети от количества PC, так как на нее также влияют:

· характеристики аппаратного обеспечения PC сети;

· частота, с которой передают сообщения PC;

· тип работающих сетевых приложений;

· тип кабеля и расстояние между PC в сети.

«Шина» – пассивная топология. Это значит, что компьютеры только «слушают» передаваемые по сети данные, но не перемещают их от отправителя к получателю. Поэтому, если один из компьютеров выйдет из строя, это не скажется на работе всей сети.

4. Данные в виде электрических сигналов распространяются по всей сети от одного конца кабеля к другому, и, достигая конца кабеля, будут отражаться и занимать «шину», что не позволит другим компьютерам осуществлять передачу.

5. Чтобы предотвратить отражение электрических сигналов, на каждом конце кабеля устанавливаются терминаторы (Т), поглощающие сигналы, прошедшие по «шине»,

6. При значительном расстоянии между PC (например, 180 м для тонкого коаксиального кабеля) в сегменте «шины» может наблюдаться ослабление электрического сигнала, что может привести к искажению или потере передаваемого пакета данных. В этом случае исходный сегмент следует разделить на два, установив между ними дополнительное устройство – репитер (повторитель), который усиливает принятый сигнал перед тем, как послать его дальше.

Правильно размещенные на длине сети повторители позволяют увеличить длину обслуживаемой сети и расстояние между соседними компьютерами. Следует помнить, что все концы сетевого кабеля должны быть к чему-либо подключены: к PC, терминатору или повторителю.

Разрыв сетевого кабеля или отсоединение одного из его концов приводит к прекращению функционирования сети. Сеть «падает». Сами PC сети остаются полностью работоспособными, но не могут взаимодействовать друг с другом. Если ЛВС на основе сервера, где большая часть программных и информационных ресурсов хранится на сервере, то PC, хотя и остаются работоспособными, но для практической работы малопригодны.

Читайте так же:
Сколько литров масла в двигателе Opel Astra G?

Шинная топология используется в сетях Ethernet, однако в последнее время встречается редко.

Примерами использования топологии общая шина является сеть 10Base-5 (соединение ПК толстым коаксиальным кабелем) и 10Base-2 (соединение ПК тонким коаксиальным кабелем).

Кольцо – это топология ЛВС, в которой каждая станция соединена с двумя другими станциями, образуя кольцо (рис. 3.3). Данные передаются от одной рабочей станции к другой в одном направлении (по кольцу). Каждый ПК работает как повторитель, ретранслируя сообщения к следующему ПК, т.е. данные, передаются от одного компьютера к другому как бы по эстафете. Если компьютер получает данные, предназначенные для другого компьютера, он передает их дальше по кольцу, в ином случае они дальше не передаются. Основная проблема при кольцевой топологии заключается в том, что каждая рабочая станция должна активно участвовать в пересылке информации, и в случае выхода из строя хотя бы одной из них, вся сеть парализуется. Подключение новой рабочей станции требует краткосрочного выключения сети, т.к. во время установки кольцо должно быть разомкнуто. Топология Кольцо имеет хорошо предсказуемое время отклика, определяемое числом рабочих станций.

Рис. 3.3. Топология Кольцо

Чистая кольцевая топология используется редко. Вместо этого кольцевая топология играет транспортную роль в схеме метода доступа. Кольцо описывает логический маршрут, а пакет передается от одной станции к другой, совершая в итоге полный круг. В сетях Token Ring кабельная ветвь из центрального концентратора называется MAU (Multiple Access Unit). MAU имеет внутреннее кольцо, соединяющее все подключенные к нему станции, и используется как альтернативный путь, когда оборван или отсоединен кабель одной рабочей станции. Когда кабель рабочей станции подсоединен к MAU, он просто образует расширение кольца: сигналы поступают к рабочей станции, а затем возвращаются обратно во внутреннее кольцо.

Звезда – это топология ЛВС (рис. 3.4), в которой все рабочие станции присоединены к центральному узлу (например, к концентратору), который устанавливает, поддерживает и разрывает связи между рабочими станциями. Преимуществом такой топологии является возможность простого исключения неисправного узла. Однако, если неисправен центральный узел, вся сеть выходит из строя.

Рис. 3.4. Топология Звезда

В этом случае каждый компьютер через специальный сетевой адаптер подключается отдельным кабелем к объединяющему устройству. При необходимости можно объединять вместе несколько сетей с топологией Звезда, при этом получаются разветвленные конфигурации сети. В каждой точке ветвления необходимо использовать специальные соединители (распределители, повторители или устройства доступа).

Примером звездообразной топологии является топология Ethernet с кабелем типа Витая пара 10BASE-T, центром Звезды обычно является Hub.

Звездообразная топология обеспечивает защиту от разрыва кабеля. Если кабель рабочей станции будет поврежден, это не приведет к выходу из строя всего сегмента сети. Она позволяет также легко диагностировать проблемы подключения, так как каждая рабочая станция имеет свой собственный кабельный сегмент, подключенный к концентратору. Для диагностики достаточно найти разрыв кабеля, который ведет к неработающей станции. Остальная часть сети продолжает нормально работать.

Однако звездообразная топология имеет и недостатки. Во-первых, она требует много кабеля. Во-вторых, концентраторы довольно дороги. В-третьих, кабельные концентраторы при большом количестве кабеля трудно обслуживать. Однако в большинстве случаев в такой топологии используется недорогой кабель типа витая пара. В некоторых случаях можно даже использовать существующие телефонные кабели. Кроме того, для диагностики и тестирования выгодно собирать все кабельные концы в одном месте.

Сравнительные характеристики базовых сетевых топологий представлены в табл. 3.1.

— экономный расход кабеля;

— недорогая и несложная в использовании среда передачи;

— простота и надежность;

— при значительных объемах трафика уменьшается пропускная способность;

— трудная локализация проблем;

— все PC имеют равный доступ;

— выход из строя одной PC выводит из строя всю сеть;

— трудно локализовать проблемы;

— легко производить монтаж сети или модифицировать сеть, добавляя новые PC;

— централизованный контроль и управление;

© 2021 Научная библиотека

Читайте так же:
Как подключить телефон к т 2?

Копирование информации со страницы разрешается только с указанием ссылки на данный сайт

Топологии сетей

topologii-setej

Термин топология сети означает способ соединения компьютеров в сеть. Вы также можете услышать другие названия – структура сети или конфигурация сети (это одно и то же). Кроме того, понятие топологии включает множество правил, которые определяют места размещения компьютеров, способы прокладки кабеля, способы размещения связующего оборудования и многое другое. На сегодняшний день сформировались и устоялись несколько основных топологий. Из них можно отметить “шину”, “кольцо” и “звезду”.

Топология “шина”

Топология шина (или, как ее еще часто называют общая шина или магистраль) предполагает использование одного кабеля, к которому подсоединены все рабочие станции.

Общий кабель используется всеми станциями по очереди. Все сообщения, посылаемые отдельными рабочими станциями, принимаются и прослушиваются всеми остальными компьютерами, подключенными к сети. Из этого потока каждая рабочая станция отбирает адресованные только ей сообщения.

Достоинства топологии “шина”:

  • простота настройки;
  • относительная простота монтажа и дешевизна, если все рабочие станции расположены рядом;
  • выход из строя одной или нескольких рабочих станций никак не отражается на работе всей сети.

Недостатки топологии “шина”:

  • неполадки шины в любом месте (обрыв кабеля, выход из строя сетевого коннектора) приводят к неработоспособности сети;
  • сложность поиска неисправностей;

сетевая карта для коаксиального кабеля

Именно по топологии “шина” строились локальные сети на коаксиальном кабеле . В этом случае в качестве шины выступали отрезки коаксиального кабеля, соединенные Т-коннекторами. Шина прокладывалась через все помещения и подходила к каждому компьютеру. Боковой вывод Т-коннектора вставлялся в разъем на сетевой карте. Вот как это выглядело:Сейчас такие сети безнадежно устарели и повсюду заменены “звездой” на витой паре, однако оборудование под коаксиальный кабель еще можно увидеть на некоторых предприятиях.

Топология “кольцо”

Кольцо – это топология локальной сети, в которой рабочие станции подключены последовательно друг к другу, образуя замкнутое кольцо. Данные передаются от одной рабочей станции к другой в одном направлении (по кругу). Каждый ПК работает как повторитель, ретранслируя сообщения к следующему ПК, т.е. данные передаются от одного компьютера к другому как бы по эстафете. Если компьютер получает данные, предназначенные для другого компьютера – он передает их дальше по кольцу, в ином случае они дальше не передаются.

Достоинства кольцевой топологии:

  • простота установки;
  • практически полное отсутствие дополнительного оборудования;
  • возможность устойчивой работы без существенного падения скорости передачи данных при интенсивной загрузке сети.

Однако “кольцо” имеет и существенные недостатки:

  • каждая рабочая станция должна активно участвовать в пересылке информации; в случае выхода из строя хотя бы одной из них или обрыва кабеля – работа всей сети останавливается;
  • подключение новой рабочей станции требует краткосрочного выключения сети, поскольку во время установки нового ПК кольцо должно быть разомкнуто;
  • сложность конфигурирования и настройки;
  • сложность поиска неисправностей.

Кольцевая топология сети используется довольно редко. Основное применение она нашла в оптоволоконных сетях стандарта Token Ring.

Топология “звезда”

Звезда – это топология локальной сети, где каждая рабочая станция присоединена к центральному устройству (коммутатору или маршрутизатору). Центральное устройство управляет движением пакетов в сети. Каждый компьютер через сетевую карту подключается к коммутатору отдельным кабелем.

Топология “звезда” на сегодняшний день стала основной при построении локальных сетей. Это произошло благодаря ее многочисленным достоинствам:

  • выход из строя одной рабочей станции или повреждение ее кабеля не отражается на работе всей сети в целом;
  • отличная масштабируемость: для подключения новой рабочей станции достаточно проложить от коммутатора отдельный кабель;
  • легкий поиск и устранение неисправностей и обрывов в сети;
  • высокая производительность;
  • простота настройки и администрирования;
  • в сеть легко встраивается дополнительное оборудование.

Однако, как и любая топология, “звезда” не лишена недостатков:

    выход из строя центрального коммутатора обернется неработоспособностью всей сети;

Звезда – самая распространенная топология для проводных и беспроводных сетей. Примером звездообразной топологии является сеть с кабелем типа витая пара, и коммутатором в качестве центрального устройства. Именно такие сети встречаются в большинстве организаций.

Какие виды топологии сети существуют?

режде чем тянуть сети необходимо знать такое понятие, как топология сетей.

Прежде, чем начинать учебу в новом разделе Сети, который подразумевает большие и достаточно сложные уроки, необходимо, как я считаю, для начала дать понятие того, что такое сети и какие они бывают. Поэтому этот краткий ликбез будет полезен ну практически всем, кто интересуется организацией сетей.

Топология сети – это классификационный признак сети, который определяет принцип соединения компьютеров (рабочих станций, машин) в единую сеть. Существует несколько топологий: линия, каждый с каждым (многосвязная), звезда, шина, кольцо (двойное кольцо), дерево (иерархия). Рассмотрим каждую в частности.

Линия

1.jpg

В такой сети все компьютеры находятся на одной линии и при повреждении линии, вся сеть приходит в непригодность, так же и при отключении одного из компьютеров, т.к. исключается связующее звено. Отправленное с одного компьютера сообщение может пройти через все компьютеры в сети, пока попадет на целевую машину.

Вообще данный тип построения сети уже, наверное, нигде и не используется, т.к. данная схема крайне ненадежна и сложна в настройке.

2.jpg

Шина представляет собой единый кабель, который выполняет роль магистрали, к которой посредством Т-коннекторов подключены компьютеры. На концах шины расположены терминаторы (согласующий резистор), которые не позволяют сигналу отражаться, что исключает информационные шумы в сети. При построении больших магистральных сетей необходимо учитывать, что например технология Ethernetпозволяет использовать кабель длинной не более 185 метров, именно поэтому надо ставить либо повторители, либо концентраторы, чтобы увеличить длину.

Отправляемое рабочей станцией сообщение распространяется на все компьютеры сети. Каждая машина проверяет — кому адресовано сообщение и если ей, то обрабатывает его. Для того, чтобы исключить одновременную посылку данных, применяется либо «несущий» сигнал, либо один из компьютеров является главным и «даёт слово» остальным машинам.

Достоинствами такой топологии является то, что ее просто установить и настроить, а количество кабеля затрачивается гораздо меньше, чем в других сетях, а так же при выходе из строя одного из компьютеров сеть продолжает функционировать.

Но как только возникают любые неполадки в сети, будь то выход из строя терминатора или повреждение на линии – вся сеть сразу приходит в негодность, а сложная локализация повреждений порой создает большие проблемы. Плюс ко всему, чем больше рабочих станций завязано на шину, тем медленнее работает сеть.

Кольцо (Двойное кольцо)

3.jpg

Как видно из рисунка очень сильно напоминает сеть Линия, но есть некоторые все же особенности. В такой сети все компьютеры подключены последовательно друг к другу, чем образовывают замкнутую сеть.

В кольце, в отличие от других топологий (звезда, шина), не используется конкурентный метод посылки данных, компьютер в сети получает данные от стоящего предыдущим в списке адресатов и перенаправляет их далее, если они адресованы не ему. Список адресатов генерируется компьютером, являющимся генератором маркера. Сетевой модуль генерирует маркерный сигнал (обычно порядка 2-10 байт во избежание затухания) и передает его следующей системе (иногда по возрастанию MAC-адреса). Следующая система, приняв сигнал, не анализирует его, а просто передает дальше. Это так называемый нулевой цикл.

Сигнал в такой сети всегда двигается в одну сторону, но допустим если использовать двойное кольцо, то два сигнала будут независимо друг от друга двигаться в разных направлениях.

4.jpg

Достоинствами такой сети является то, что ее просто установить и собрать с использованием минимального количества оборудования, а так же устойчивая работа сети.

Но как только из строя выходит одна из машин, или происходит порыв на линии вся сеть приходит в негодность и такие проблемы достаточно сложно найти и устранить, а конфигурирование и настройка такой сети вызывает массу хлопот.

Каждый с каждым (Многосвязная)

5.jpg

В такой сети каждый компьютер дословно соединен с каждым по отдельности. Что конечно сказывается на затратах в отношении кабеля и дополнительного оборудования, но зато в случае отказа одного из компьютеров в такой сети, все остальные компьютеры не остаются без соединения и продолжают дальше нормально взаимодействовать, а скорость обмена информацией в такой сети достаточно высокая.

Такая сеть применяется крайне редко и лишь для обеспечения большей надежности и высокой скорости, что допустим для обеспечений домашней сети слишком дорого, так как требует больших затрат на дополнительное оборудование и в разы большее количество кабеля.

Звезда

6.jpg

На мой взгляд, самая распространенная и верная топология. Такая сеть организована по принципу централизованного обращения, т.е. есть центральный компьютер или концентратор (хаб), к которому подключены все компьютеры сети.

В такой сети может быть очень много компьютеров, причем все они должны быть на удалении от хаба не более 100 метров (такова особенность принципа распространения сигналов). Для такой сети требуется не так много оборудование и обслуживание такой сети происходит гораздо проще, чем во всех предыдущих вариантах, единственный минус такой сети в том, что при выходе из строя хаба все компьютеры остаются без соединения.

Так же минусами можно назвать некоторые мелочи, такие как: большие затраты на кабель (но меньшие по сравнению с многосвязной сетью) и ограничение по количеству компьютеров в зависимости от количества выходов на концентраторе.

Зато при повреждении одной из линий без сети остается одна машина, что так же и при повреждении самой машины, т.е. вся сеть продолжает стабильно работать даже если какой-то элемент дает сбой.

Дерево (Иерархия)

7.jpg

Топология-наследница, которая берет свое начало из топологии «Звезда». Думаю здесь говорить особо много не буду, так как все практически то же что и у звезды, только более разветвленное, собственно потому и дерево. Такие сети применяются на крупных предприятиях. Причем к хабу могут подключаться как компьютеры, так и другие хабы, образуя новые ветки.

Заключение

А в заключение хочется сказать следующее. Я здесь рассказал о самых популярных схемах, но так же существуют еще такие малоизвестные (и что наталкивает на мысль об их практической не применимости на практике), как TokenRing, т.е. объединение кольца и звезды; Шина-Звезда, т.е. на одном хабе несколько шин и т.д. и т.п. Все это уже изыски и на мой взгляд они ни к чему, когда есть проверенные топологии из которых особняком стоят Звезда и Дерево, как самые стабильные и легко реализуемые.

Но так же есть еще и беспроводные сети, где все компьютеры соединяются посредством специальной точки доступа с определенного расстояния, но о беспроводных сетях все же будем говорить отдельно.

Если вам понравился данный материал, то отложите его в закладки, что так же поможет нам в продвижении. Спасибо что читаете наш сайт.

Электронный учебно-методический комплекс по «ТМ и О ТС»

2.7 Виды топологий построения транспортной сети SDH.

Построение архитектуры сетей SDH ведется на основе базовых топологий:

— «последовательная линейная цепь»;

Наиболее простая базовая топология – это «точка–точка»
(рис 2.7.1).

Рис. 2.7.1. топология «точка–точка».

Она может быть реализована с помощью терминальных мультиплексоров (ТМ), как по схеме без резервирования канала приема/передачи, так и по схеме со 100% резервированием типа 1+1, использующей основной и резервный электрический или оптический агрегатные выходы (каналы приема/передачи). При выходе из строя основного канала сеть в считанные десятки миллисекунд может автоматически перейти на резервный.

Используется при передаче больших потоков данных по высокоскоростным магистральным каналам, например по трансокеанским подводным кабелям, а также как составная часть радиально-кольцевой топологии. (используется в качестве радиусов). Является основной для топологии «последовательная линейная цепь».

Рис. 2.7.2 топология последовательной линейной цепи, реализованный на ТМ и Т D М.

Топология последовательная “линейная цепь” используется тогда, когда интенсивность трафика в сети не так велика и существует необходимость ответвления в ряде точек на линии, где могут вводиться и выводиться каналы доступа.

Рис. 2.7.3. топология последовательной линейной цепи с защитой 1+1 типа упрощенное кольцо.

Она реализуется с использованием как терминальных мультиплексоров (ТМ) на обоих концах цепи, так и мультиплексоров ввода/вывода ( TDM ) в точках ответвления.

Данная топология может быть представлена либо в виде простой последовательной линейной цепи без резервирования (рис. 2.7.2), либо более сложной цепью с резервированием 1+1 (рис. 2.7.3). Последний вариант топологии называется уплощенным кольцом.

В конфигурации 1+1 сигнал STM-N при передаче посылается по тестируемому пути и по резервному. По информации байтов заголовков выбирается наилучший сигнал, или этот выбор происходит по командам полученным системой управления. Из-за передачи сигнала по резервному пути архитектура 1+1 не позволяет увеличить трафик за счет организации дополнительных каналов.

Топология «звезда», реализующая функцию концентратора.

В этой топологии один из удаленных узлов сети, связанный с центром коммутации (например, цифровой АТС) или узлом сети SDH на центральном кольце, играет роль концентратора, или хаба, где часть трафика может быть выведена на терминалы пользователей, тогда как оставшаяся его часть может быть распределена по другим удаленным узлам (рис 2.7.4). Ясно, что этот концентратор должен быть активным и интеллектуальным (в терминологии локальных сетей), т.е. быть мультиплексором ввода/вывода с развитыми возможностями кросс-коммутации. Иногда такую схему называют оптическим концентратором (хабом), если на его входы подаются частично заполненные потоки уровня STM-N (или потоки уровня на ступень ниже), а его выход соответствует STM-N. Фактически эта топология напоминает топологию «звезда», где в качестве центрального узла используется мультиплексор SDH.

Рис. 2.7.4. топология «звезда» с мультиплексором в качестве концентратора.

Кольцевая сеть состоит из аппаратуры SDH (узлы передачи), последовательно соединенных между собой в замкнутую структуру.

Топология “кольцо” широко используется для построения сетей SDH первых трех уровней иерархий. (рис 2.7.5).

Рис. 2.7.5 топология «кольцо».

Основное преимущество этой топологии – легкость организации защиты 1+1, благодаря наличию в мультиплексорах SMUX (синхронных мультиплексоров) двух пар (основной и резервной) оптических агрегатных выходов (каналов приема/передачи), дающих возможность формирования двойного кольца со встречными потоками. Во всех сегментах кольца потоки должны быть одинаковы. Защита в кольцевых сетях – автоматического типа (сети с самовосстановлением) с активизацией переключений в случаях повреждения и случайного понижения качества сигнала. Бывают кольца с переключением тракта или переключением секций мультиплексирования.

Схема организации потоков в кольце может быть либо двухволоконной (как однонаправленной, так и двунаправленной с защитой по типу 1+1 или без нее), либо четырехволоконной.

Однонаправленная, когда во время нормального осуществления связи между узлами В-C сигнала от В — С и от С- В следует по кольцу в одном направлении.

Двунаправленное, когда во время нормального осуществления связи между пунктами В и С сигнал транспортного потока от В к С протекает по кольцу в направлении противоположном относительно сигнала С к В.

В случае однонаправленного кольца возможна как защита тракта, так и секции мультиплексирования.

Сеть с защитой 1+1 состоит из двух колец, одно из которых передает трафик, второе предназначено для защиты.

Если резервное кольцо не используется для защиты, то его можно использовать для передачи дополнительного трафика; в случае же запроса о защите дополнительный сигнал удаляется из резервного тракта.

В случае двунаправленного кольца может осуществляться защита только на уровне секции мультиплексирования.

Каждую секцию кольца можно реализовать на двух или четырех волокнах:

— двунаправленное двухволоконное. Здесь каждая секция кольца содержит два волокна (одно для передачи, одно для приема); следовательно, в каждом волокне половина каналов будет использоваться в рабочем режиме, а вторая – в резервном.

— двунаправленное четырехволоконное кольцо. Здесь в каждой секции кольца 4 волокна (два для передачи и два для приема). Рабочие и резервные потоки направлены по двум разным волокнам как в направлении передачи, так и в направлении приема.

Выбор топологий кольцевых конфигураций производится на основе требований, связанных с качеством обслуживания конечных пользователей сети и технико-экономическими возможностями оператора связи.

Например, двухволоконное однонаправленное самовосстанавливающееся кольцо с резервным переключением трактов имеет хорошие технико-экономические показатели (простота, надежность, малый объем оборудования), но ему присущий принципиальный недостаток: время передачи и приема между двумя смежными элементами сети может существенно различаться (А-B < B-А), что может отразится на качестве передачи цифровой телефонной информации. По этой причине данная кольцевая схема не может применяться для создания колец большой протяженности.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector